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Perfect Fluid in a Static Isotropic Universe 
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Solutions of the Einstein field equations for a perfect fluid in a static isotropic 
gravitational field are obtained. The solution given by Melnick and Tavensky is 
corrected. 

I N T R O D U C T I O N  

The purpose of the present work is to improve upon the solutions of  
the Einstein equations obtained by Melnick and Tavensky (1975) for a 
perfect fluid. A complete set of  exact solutions is obtained in this paper. 

1. P R O B L E M  OF M E L N I C K  AND TAVENSKY 

The paper  by Melnick and Tavensky (1975) sets out to give a method 
of  obtaining solutions of  the Einstein equations for a perfect fluid in 
comoving coordinates where the energy-momentum tensor is given by 

T ~. = (p + w)uUu ~ _ p g ~  

T~ = T 2 = T33 = - p ,  T o = ~ (1.1) 

T~=0  for i # j  

p is the pressure, to is the rest energy density, and the metric considered in 
this paper  will be static and isotropic, that is, 

ds: = exp[2~b (x, y, z)] dt 2 - exp[2~b(x, y, z)] (dx2+ dy2+ dz 2) (1.2) 

where ~b(x, y, z) and ~b(x, y, z) are arbitrary functions. 
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Melnick and Tavensky (1975) show that for this case the Einstein 
equations reduce to 

A, ik = AA,iA,k - -  ~,rik (1.3) 

-8p~r = �89 e x p ( - 2  0)[2V2~/, + (Vq,) 2 - 2(V ~b) 2] 
(1.4) 

8~to = exp(-2tp)[2vZd/+ (Vtp) 2] 

where 

x =4,42 

A = exp[-(~b + ~)] 

= ~[V2A-2A(V~b) 2 ] 

(x ,  y,  z )  = ( x ' ,  x :, x ~ ) 

i, k = 1 , 2 , 3  

(1.5) 

F,i = aF/axi 

The authors then set out to simplify equations (1.3). But in our opinion 
the work of  Melnick and Tavensky (1975) needs significant additions and 
alterations on several grounds, 

First, in order to solve equations (1.3), Melnick and Tavensky (1975) 
rewrite equations (1.3) as 

dA,i = AA,i dh - E  dxi (1.6) 

From equations (1.6), Melnick and Tavensky (1975) obtain 

a,x = F(A, x) = - ~  

A,y = G(A, y) = -Y~ 

A,z = H(A, z) = - E  

But it will be shown later that the correct result is 

A x = F(A, x) = - x E  + u(h)  

A# = G(A, y) = - y E +  v(A) 

A z = H ( A ,  z ) = - z E + w ( A )  

Obviously this means that much of  the rest has to be changed. 
Again, the case o f E  = const is not worked out by Melnick and Tavensky 

(1975), except for an observation that i fE = const, then the A = const surfaces 
are planes. (This omission is mentioned by them.) 

Instead of  making these additions and alterations, it would be simpler 
to solve equation (1 .3 ) f rom the start. We shall go further than Melnick 
and Tavensky (1975) and obtain the complete set of  solutions for the case 
under consideration. 
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2. S O L U T I O N S  OF THE P R O B L E M  

2.1. Special Case ~b = const, i.e., A = const 

From equation (1.3), we get 

A,xy = A,yz = A,zx = 0 

A,xx -- A,yy = A,zz = - ~  

From equations (2.1) one can get 

A = P(x)  + Q(y) + R(z )  

Using (2.2) and equations (2.1), we get 

d2p d2Q d2R 
dx 2 -  dy 2 ~ z  2 = - ~  

which implies E --- const. 
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(2.1) 

(2.2) 

(2.3) 

Integrating (2.3) and using (2.2), one can solve equations (1.3) for 
h = const as 

A = -�89 2 + y2 + z2)Z + ClX + C2y + C3z + C (2.4) 

where the C's and Z are constants. 
Also ~b and ~ are determined from (1.5). 

2.2. General Case 

We shall prove that the complete solution is given by 
X2 q- y2-}- Z 2 

A = .  2 ( a o f + b o g ) + x ( a l f + b l g )  

+ y (a2 f+  b2g) + z (a3f+ b3g) - ( a , f +  b4g) (2.5a) 

I r d f / d r / ]  1/2 
A = / r / . f -  g.I dr/ (2.5b) 

where f(r / )  is any arbitrary function of 

alx + aEy + a3z - a4 -  �89 2 + y2 + z 2) 
r~ = - blx - b2y - baz + b4 + �89 2 + y2 + z 2) (2.5c) 

g=f r / ~  dr/ (2.5d) 

where ao, al ,  a2, a3, a4, bo, b l ,  bE, b3, and b4 are all constants such that 
r/ is not a constant. 

To prove these results, we first establish the following lemmas. 
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L e m m a  I. For A # const, there exist ~, u, v, w, and k which are functions 
of A; at least two of which are not linearly related, such that equations (1.3) 
are equivalent to the followirig three equations: 

(X 2 + y2 + g2) ~_A _ XU a _ yVa -- ZWa + ka = 0 (2.6a) 

-- (X2 .~. y2 -t- Z2)~ 
A - ~- xu  + yv  + zw  - k (2.6b) 

2 

E+Y.xx u+uaA v+vaa w+wax k+kaa 
. . . . . . . .  (2.6c) 

~ u, v~ w~ ka 

Proof. From equations (1.3) we get 

Axy = AA~Ay (2.7a) 

A~x = - E + A A  2 (2.7b) 

We have similar equations for Ayz, Azx, and so on, 
From the above, 

Axy Ay 

Axz Az 

i.e., the partial derivatives of Ax with respect to y and z (treating x constant) 
are proport ional  to the derivatives o f  A with respect  to y and z (treating x 
constant) .  Hence ,  if  x is treated as a constant ,  Ax is a funct ion o f  A, i.e., 

Ax = F ( A x )  (2.8a) 

aF(X, x) 
- -  -AXx (2.8b) 

0A 

Similarly, Ay = G(A,y), Az = H(A,~), and 

OG(A,  y )  OH(A,  z )  
aA - AAy ; O ~ -  AA= (2.9) 

From (2.8a), 

Axx a F ( A , x )  A x + a F ( A , x )  
aA ax 

By (2.8b), 

= A~2_t " aF(h, x) 
A~,~ 

Ox 
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Therefore, from (2.7b), 

Similarly, from (2.9) 

OF(;~, x) 
X (2.10a) 

ax 

OG(h,y) 
- ~  (2.10b) 

Oy 

OH(A, z) 
- -  - -X (2.10c) 

dz 

Since from (2.10a), E is a function of  A and x only, and from (2.10b), 
is a function of  A and y only,  and from (2.10c), E is a function of  A and 
z only,  this implies that X is a function of  h only,  i.e., 

X=X(A) 

Therefore, from equation (2.10), we get 

F(A, x) = - x E +  u(h) 

G(A, y) = - y N +  v(h) (2.11) 

H(A, z) = - z X +  w(A) 

From (2.8b) and (2.11), 

Similarly, 

AAx = - x ~  + ua 

i.e., 

But 

AAy = -yY~ + v~, AA~ = --ZEA + wx 

Ax - x ~ x  + u,x 

Ay --yEA +vx 

Ay ' 

h and z constants 

Therefore, from equation (2.13) 

(x 2 + y2) ~ _  xux - yv = function of  z and A 

(2.12) 

(2.13) 
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Similarly, 

B a s u  e t  al. 

and 

s = a o f +  bog 

u = a l f +  b ig  

v = a 2 f +  b2g 

w = a 3 f +  b3g 

k = a 4 f +  b4g 

where ao, bo, al ,  bl, az, b2, a3, b3, a4, and b~ are all constants. 

(2.15b) 

2 2 ~x (y + z ) - - ~ - - y v ~ -  zwa = function of x and h 

(z 2 + x 2) ~ -  zwa - xu~ = function of  y and h 

Comparing, we get (2.6a). 
By virtue of  (2.6a), the partial derivatives of  A are the same as the 

partial derivatives of the rhs of  (2.6b); therefore, they can almost differ by 
a constant. That constant term can be absorbed into an unspecified function 
k(h).  Hence we get (2.6b). 

Again differentiating (2.6a) with respect to x, we get 

x]~ x - u x 
hx - _ 1(x2 + y2 + Z2)•AA + XUAA .~_ y v h  A ..~ ZWAA __ kA h 

Therefore, from (2.12), 

A = ~(x 2 + y2 + z2)s _ xu~A - yvaa - zwaa + ka, (2.14) 

Now, from (2.14) and (2.6b) we get (2.6c). 
Therefore, from equations (1.3) we have obtained all three equations 

of (2.6). Hence, equations (2.6) are necessary for equations (1.3), which 
can now be established easily by calculating A o from (2.6b) and using 
(2.6a) and (2.6c). Hence Lemma 1. �9 

L e m m a  2. If  equation (2.6c) holds, then there ex i s t f  = f (A)  and g = g(A) 
such  that 

f~a + f ga;, + g 
- -  - - -  (2.15a) 

L g~ 
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Proof We shall prove this by assuming Z ~ 0. The proof  is similar if 
s = 0, but at least one of u, v, w, and k is not zero. The case s = u = v = w = 
k = 0 is trivial. 

Let 

u v w k 
a, ~ = f l ,  Z A, s 8 (2.16) s 

Putting (2.16) into equation (2.6c), we get 

which implies 

;7 
e=+2 

- - +  = 0  
as Y- s 

6=z 2 E 
~ - - - - ~ - =  0 

6:~ s s  

. . . .  (2.17) 

Integrating equations (2.17) and using equations (2.16), we see that Z, u, 
v, w, and k can be written in the form of  (2.15b). Hence Lemma 2. �9 

Now substituting s  u, v, w, and k from (2.15b) into equation (2.6b), 
we get (2.5a). 

Further substituting (2.15) in equation (2.6a), we get 

gx alX"l-azy+a3z-a4-�89 
fA -- -- blx - b2y - -  b32 + b4 + �89 2 + y2 + z 2) (2.18) 

= 77 (say) 

taking g = g(f) .  
Therefore, from (2.15a), 

Since gl = ~, i.e., 

f 2 = f "  g f - g  
ge 

f ~ = f "  r l - g  
~S 
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Therefore, 

I F -ail<S .] f =[(~7. f -g ) f , 7 ]  '/2 ~ A= I_rl" f - g 3  

where ~7 is determined from (2.18) and 

which gives (2.5b) and (2.5d). 

d~7 

3. CONCLUSION 

We have obtained the complete set of solutions for the Einstein field 
equations for an energy-momentum tensor given by equation (1.1) and a 
metric given by equation (1.2). Here the Einstein equations reduce to 
equations (1.3) and the complete set of solutions are given for the following 
cases. The solutions obtained here are improvements of the work of Melnick 
and Tavensky (1975). 

Case L For ~b = const, the solutions of equations (1.3) are obtained 
from (2.4); then, from (1.5) we get ~. 

Case II. For ~b # const, the solutions of equations (1.3) are obtained 
from (2.5). 
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